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Abstract 

For powder samples made up of crystallites with pla- 
nar facets, the domain where the overlapping volume 
function is defined can be split into intervals where the 
overlapping volume function turns out to be a cubic. 
A method of calculating the coefficients of each cubic 
function is illustrated. The coefficients of the cubic, 
relevant to the interval containing the origin, are related 
to Scherrer constants E K, K; T and to the rotundity 
parameter A4. Their expressions are worked out and 
numerically illustrated for dodecahedra, icosahedra and 
triclinic parallelepipeds. The general functional expres- 
sion of peak profiles relevant to planar facets is also 
given. 

1. Introduction 

The peak profile [-- Ih(S)] around a reflection h = 
(h, k, l) is fully determined by the only interphase sur- 
face when the crystallites, constituting the powder sam- 
ple, have a negligible lattice disordert (Wilson, 1962a; 
Guinier, 1963). In reality, this condition is rarely met 
and might explain why the interest in finding explicit 
relations between peak profiles and geometrical fea- 
tures of interfaces have considerably decreased since 
the early 60's, when most of the presently available re- 
sults (Wilson, 1970) were obtained. Nonetheless, further 
theoretical results on this issue can be obtained under 
the rather mild assumption that a sample's crystallites 
have planar facets. This configuration was analyzed by 
Grebille & B6rar (1985) under the further assumption 
that crystallites have a convex polyhedrical shape. These 
authors$ showed that each polyhedral crystallite can 
be decomposed into triangular tnmcated prisms and 
reported the peak profile expressions for the three pos- 
sible shapes of the resulting triangular truncated prisms. 
These expressions depend on the lengths of the three 
edges parallel to the considered reflection direction. 

5" Of course, it is assumed that the corrections related to background 
scattering, wavelength dispersion, finite size of the collimation slits 
and other geometrical factors have been taken into account. 

We are grateful to the referee who brought this paper to our attention. 

©1996 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

[See their equations (6), (8) and (9).] In this way, 
the general expression of peak profiles for samples 
consisting of equal convex polyhedra was obtained in 
terms of the lengths of the parallel edges resulting from 
this decomposition. 

The aim of this paper is to make the analysis of 
this geometrical configuration more complete by using 
a general property of the corresponding overlapping 
volume function [Vfi(r)], more simply referred to as 
the overlap function (OF). The OF yields the volume 
common to the filled parts of the sample and of the 
'ghost' resulting from the translation of the sample by 
r along h, the direction of reflection h. The general 
property of the OF that will be proven in this paper is: 
for samples made up of crystallites with planar facets, 
the overlap function Vfi(r) is 

3 
Vfi(r) = E Fz , i ( r -  Di) t, 

l=0 

D i < r < D i +  1, i = 0 , 1  . . . .  , N - 1 .  (1) 

In other words, the interval [0, Rmax], where Vfi(r) is 
defined, splits into the subintervals [Di, D i . 1], i = 
0,1 . . . .  , N -  1, with D O = 0 and D N = ~max, and 
in each of these Vfi(r) is a cubic function. Wilson 
(1962a) has already remarked that the OF is a cubic 
for rectangular parallelepipeds, tetrahedra and octahedra. 
According to (1), this property simply follows from 
the planarity of the facets. Moreover, (1) also implies 
that the inverse Fourier transforms of the peak profiles 
reported by Grebille & Brrar (1985) must have the 
analytic expression (1) because the profiles are relevant 
to particles with planar facets; this could be used to 
prove (1). However, the present analysis is based on the 
integral expression of the second-order derivative Vh(r) 
of the OF. This approach presents three advantages: 
(i) the convexity assumption can be removed; (i.i) the 
explicit functional expression of Vfi(r) can be obtained 
in terms of geometrical parameters more directly related 
to the interface geometry, i.e. the dihedral angles, the 
angles between the edges entering each vertex and the 
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lengths of the edges; (iii) the expressions of Scherrer 
constants /(7 K, /~T as well as that of 54, the rotundity 
parameter (see e.g. Langford & Wilson, 1978), are 
also obtained; they are simply related to coefficients 
/71,0, /"2,0 and Fa, 0, whose explicit expressions will be 
evaluated later. 

The paper is organized as follows. §2 reports some 
general definitions required by the analysis to be carded 
out in the following sections. Result (1) is worked out in 
§3. The explicit expressions for/(7 K,/(7 T and A//as well 
as a numerical application of these formulae to the cases 
of dodecahedra, icosahedra and triclinic parallelepipeds 
are reported in §4. Finally, the implications of (1) 
in determining the analytic form of peak profiles are 
discussed in §5. 

2. Basic formulae 

The overlap function Vfi(r) is related to the so-called 
oriented stick probability function (OSPF) "Th (r), defined 
as (Ciccariello, 1985) 

-yh(r) : V,71 f dvl PF(rl  + rh)PF(r l ) ,  
R a 

(2a) 

by the simple relation 

V~(r) = WF%(r/ lh l )  (2b) 

(see Ciccariello, 1990, §§II and HI). Here, V F denotes 
the total volume of the only crystallites of the sample 
(i.e. V F is the volume of the filled part of the sample) 
while function PF (r) is defined as being equal to 1 when 
the tip of r falls inside the filled part of the sample and 
equal to 0 elsewhere. The definition of "Yh (r) generalizes 
that of the correlation function introduced by Debye, 
Anderson & Brumberger (1957) in the realm of small- 
angle X-ray scattering (SAXS). Indeed, since definition 
(2a) makes sense even when h is not a point of the 
reciprocal lattice, the SAXS correlation function is the 
angular average, with respect to all possible orientations 
of h, of the OSPFs "Yh (r). Since the latter is proportional 
to the OF at the lattice points, it appears evident that 
small- and wide-angle scattering are strongly relfited 
(Ciccariello, 1990). 

Equation (2a), in terms of Dirac's function, reads 

7h(r) = VF 1 f dv 1 f dv 2 8(r 1 + r h - r 2 ) .  (3) 
VF VF 

These properties will be referred to as the scaling and 
the parity properties. Moreover, (3) ensures that "Yh(r) is 
such that, at any point r, q,h(r-) = "Yh(r+). Then, with 
the assumption that (1) has already been proved, from 
(2b) at r = D i, Vfi(D~-) = Vfi(D+). Hence, 

3 

)z=F0, i ,  i = 1  2 . . . .  N - 1 .  2 I],i--1 ( D i -  D i - i  , , 
/ = 0  

(5) 
Owing to the property "/h(0) = 1, from (2b) and (1) at 
r = D O = 0, it follows that F0, o = V F. Then, (5) can be 
used in order to determine recursively all the remaining 
F0,i's with i > 0. It turns out that each Fo, i, with i > 0, 
depends on the Fz, j ' s  with 1 < l < 3 and 0 _< j <_ i -  1, 
as well as V F (= F0,0). 

In order to prove (1) and to obtain a method of 
calculating the Fm,i's, it is convenient to recall the 
integral expressions of the first and second derivatives 
of OSPF worked out by Ciccariello (1985): 

t 

-Yh(r) = f dS 1 ( h . b l ) P F ( r  1 + r h ) / V  F, (6) 
8F 

tt 

"Yh(r) = -- f aS1 ( h ' b  1) 
S F  

x f aS 2 (h .  b2)6(r 1 + r h -  r 2 ) / V  F. (7) 
S F  

Here, SF denotes the interface, i.e. the surface bounding 
the filled part of the sample, and # i (i = 1, 2) denotes the 
unit vector orthogonal to dS i and pointing outwardly to 
the filled region. 

3. The local cubic structure 

The proof that the OF behaves in each interval as a 
cubic function can be obtained from (7) by exploiting 
the property that the interface consists of A/" planar 
facets. The analysis closely follows a recent paper by 
Ciccariello & Sobry (1995), devoted to some SAXS 
aspects of the problem and referred to as paper I in the 
following. Let )v i denote the ith planar facet of interface 
S F so that $F = UiaC=l"~i • Then, by (2b) and (7), the 
second derivative of Vfi(r) splits into a sum of integrals, 
i.e. 

Iv" 
= E (8) 

i,j=l 

where 

Equations (2) and (3) show that "Yn(r) only depends on 
the geometry of crystallite boundaries and on the latter 
disposition in the space, when these are observed along 
direction h ___- h/lhl. They also imply that 

~ p h ( r / p )  - -  "Yh(r), p E Z +, (4a) 

'Th (r) -- "Th (--r). (4b) 

5o(,~)(r) = _ f dS1 (h .  hi) 

x f ( la .b j )  dS 2 6(r 1 + rla - r2) 
0% 

(9) 

is the contribution to the second derivative owing to the 
facet pair (i, j) .  [The dependence on la is not reported on 
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the left side of (9) for notational simplicity.] From (9), it 
is evident that 7"(2,)(r) = 7"(2,)(r) and 7"~2~)(r) = O. (The 
latter follows fro/fi the fac(t'heintegrand' is null because 
Dirac's function requires that r h  = r 1 - r 2 and, since r 1 
and r 2 are points of .T" i, r h  turns out to be orthogonal 
to fi'i.) Then, (8) becomes 

Vfi' (r) = 2 E 7"~(,23)(r). (10a) 
l <_i<j<_Af 

The proof of (1) is trivial once it has been shown that the 
range of r 's ,  where each 7"(2)(r) is defined, splits into 
subintervals [Dij,k, D i j  k+li~Jwith Dij ,k  < Di j , k+!  and 
k = O, 1 . . . . .  ( N i j -  1),'and that in each of these 7"~])(r) 
turns out to be a linear r function. Indeed, assume that 
this result has already been proven. Then, 

[0, R m a x ] - - [ 0 ,  DN] = U [Di~,k' Di3,k+l]" 
l <i<j<.hf 

O<k<(N~-l) 

Consider now the finer decomposition resulting from the 
intersection operations 

[Dij,k'DiJ,k+l] N [DcJ',k"Di'j',k'+l] 

for all possible values of the involved indices. By 
so doing, the interval [0, Rmax] will be split into the 
subintervals [D i, Di+I] (with D i < Di+l, D O = 0 and 
i = 0, 1 . . . .  , N -  1) such that in each of these each 
7"(2)@) has a well defined linear expression (eventually ,3 
equal to zero). Consequently, the (linear) expression of 
Vfi(r) turns out to be determined in each subinterval 
[D i, Di+l] by (10a). Then, two subsequent quadratures 
yield 

Rmax 
Vf,(r) - f (r - t)V~,'(t) dt (10b) 

7- 

and the explicit cubic expression (1) of Vfi(r) is ob- 
tained in the subinterval [D i, Di+l] in which the con- 
sidered r value ties. Thus, the proof of (1) will be 
accomplished once the linear r dependenc~ of each 
7"(z3)(r ) and the associated subintervals have9 been de- 
temfined. 

To achieve this goal, consider a pair of facets, say 
~i  and .~'j with i 76 j ,  lying on planes H i and Hi.  
These can be coinciding, parallel or intersecting. In the 
first case, 7"!2_)(r) is identically equal to zero for the 
same reason Mat 7"(,,~)(r) = 0. For the other cases, it 
is noted that (9) ensures that 7"!2)(r)^ can differ from 
zero only when 5ci, translated by rh ,  intersects .Tj. 
[This condition is required by the Dirac function present 
in the integrand of (9). For later convenience, it is also 
noted that, when r = 0, the same function will require 
that F i touches 5cj for 7"(,~)(r) to be different from zero. 
Then, clearly, if the contact takes place at a point, this 
will be a vertex of the interface while, if it takes place 

along a segment, this will be (part of) an edge.] Thus, in 
the second case, 7 '(2) (r) is equal to zero unless r is equal 
to the distance (ev~uated along direction la) of H i from 
Hi ,  a possibility that will be assumed not to take place 
in the following for reasons of simplicity.* The last case, 
that of intersecting H i and H i , is the most interesting 
one. In this case, H i and H i can be restricted to the 
half-planes containing facets 9ci and .Yj. Fig. 1 depicts 
a typical configuration where facet ~i,  translated by rh,  
intersects facet 9rj. The superposing segments, shown in 
bold, lie respectively on tines a and b parallel to 0 0 ' ,  
the intersection line of the two half-planes. When r is 
slightly increased, lines a and b will move respectively 
towards the right and the left of the figure. Owing to the 
polygonal shape of the 5ci and ~3 boundaries, the length 
of the intersection segment will be a linear function of r, 
whose numerical coefficients depend on the sides of 9ri 
and 9rj that delimit the superposing segments. Further, 
the figure makes it evident that the sides do not change as 
r varies in an interval such that a moves inside one of the 
intervals [A't, ,A'm] ' and, simultaneously, b moves inside 
one of the [Bp, Bq]'s. {Point A t (Bt) is the orthogonal 
projection of vertex A t (Bt) of "Y'i (.Tj) on the axis X 
1II4)i Moreover, the extrema of each interval, for instance 

A'z] or [B' 1, B2], are nearest-neighbor points on X 
or on Y. } These properties and the fact that integral (9), 
for simple dimensional reasons, is proportional to the 

* Indeed whenever this happens at this particular value, denoted 
' 2 )  

by r0, 7v},~ (r) is proportional to 6(r -- to) and the proportionality 
coefficient depends on the area of the overlapping surfaces between 
.Tj and .T'i, translated by r0h  (Ciccariello, 1985). Hence, these 6-like 
contributions are known and can be simply accounted for, though the 
final expression of the OF will be slightly more involved. 

~y 

Y 

/ / ~6 ,  / / "  ~-" ~ '~/~ ~" 
/ / ~ d - 2 D %  / t / ~ / ,  , i I D -  

/. t / / ) , /, , / ,,x 

Fig. 1. Planar facets 9ri and .Tj are delimited by polygons 
A1, A2 . . . . .  As and B1,132 . . . . .  B4, respectively. They lie on 
the half-planes Hi and IIj ,  intersecting along z. Cartesian systems 
O;ry: and O X Y Z  = O x Y z  are right-handed and the first is 
also orthogonal. The small bold segment of .Ti, lying on line a 
parallel to z, translated by rid, superimposes the bold segment of 
.T'j, lying on line b. 
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length of the intersection segment, ensure the linearity 
of P(~)(r) and allow the determination of the different 
subintervals as well as that of the coefficients of the 
relevant linear functions. Hence, the proof of (1) could 
already be considered accomplished. 

However, for greater completeness, the contributions 
to 7-)(2)(r) owing to the portion of the )v facet, delimited 
by t ~  condition 

2 1 ~ XA~ 5 < X 1 < XA~ 2 ---- X F ,  (11) 

and to the 9r'j portion, delimited by 

Y~r =- YB'~ < Y2 < YB'2 -- YF (12) 

(see the hatched portions of Fig. 1), will now be ex- 
plicitly worked out. The equations of (the relevant parts 
of) sides A4A 3 and A1A 2 are 

7 " 1 ( X l )  ------ C 2 ( X l  --  X I )  q- ZA4 (13a) 
! ! 

~ ' 1 ( X l )  ~ - - C 2 ( Z l  - -  : ~ I )  -q- Z " " .  ( 1 3 b )  A 4 

! t t 
H e r e ,  c 2 - co t ' s2 ,  c 2 - co t ' ) '  2, w h i l e  ")'2 and  ")'2 are the  
angles formed by A 4 A  3 and A1A 2 with ~ and -~ ,  
respectively. Similarly, the equations of (the relevant 
parts of) sides B I B  2 and B4B 3 are 

z2(Y2) - Q(Y2 - YI) + ZBx ( 1 4 a )  

! ! 

z2(Y2) - -Q(Y2 - £ z )  + Zu4, (14b) 
! ! 

where c 1 - c0t71 (c 1 - cot 71), 71 (7'1) being the angle 
formed by B1B 2 (B4B3) with ~ ( - i ) .  The contribution 
to 7)(~) (r) from the considered portions of .T'~ and .T'j is 

! 
£F ~2(Y2) 

- (fi" 5 i ) ( ( a ' a j )  f dYe f 
£ ,  22(]I2)  

x 5(r 1 + r l a -  r2). 

t 
XF "~'1( x l  ) 

dz2 f dxl f dZl 
• I ~(z~) 

Moreover, r 1 = (x 1, 0, z 1), r 2 = 
(Y2cos aij, Y2sin aij, z2), with cos o~ij = &i " ~j" The 
integral is evaluated by the procedure expounded in 
Appendix A of I. Its final expression is 

-{ [ ( f i .  5i)(fa.~'j)]/sin aij  } max[Lma x - Lmi n, 0], (15) 

where 

Lma x _ rain[Z,'1 (rh u cot aij  - rm~) + rhz; 

2'2(rhu/sin oqj)] (16a) 

Lmi. - max[ l( h  cot % - +  hz; 

22(rhy/sin a~j)] (16b) 

with the following constraints on r: 

r < min[YF~m ~ij 
- L hu 

:~FSin cqj 

' hucos oqj - hxsin oqj 

max [17is~ a/ j  ~"ISinOQj 

r _> L ~ ' hucos aij  - h~sin ai j  

and 
fi =- hy, hz). 

= R 1 

(17a) 

-- R 2 

(17b) 

It is emphasized that (15) is a linear r function, owing to 
definitions (16a), (16b), (13) and (14)• Clearly, whenever 
constraints (17a) and (17b) were not simultaneously 
obeyed, the considered portions of the pair of facets 9r'i 
and .T. would yield a null contribution to 7 :'(2) (r) In 

3 . . . ,3 " 
contrast, interval [R 1, R2] splits into two subintervals 
[R 1, R ] and [R', R2], depending on the value assumed 
by (15)• Only the subinterval where inequality Lma x > 
Lmi n takes place must be considered, otherwise the con- 
tribution to T'(2, ) (r) is null. In general, this subinterval 
splits into smaller subintervals determined by the values 
of Lma x and Lmi n resulting from definitions (16a) and 
(16b). In this way, the r subintervals and the associated 
expressions for the contributions to p(2)(r) arising from 
the considered portions of the pair of'~acets .T i and .Tj 
are obtained. In any case, these contributions are linear r 
functions Of course, in order to fully determine p}2) (r), • . ~J ° 
the contributions arising from all the other possible parrs 
of the remaining portions of .T" i and ~'j must be taken 
into account• Their evaluation can be similarly carried 
through. In this way, the linear expressions for io(2)(r) 
and the corresponding r intervals [whose extrema are 
the Dij,k's used below (10a)] turn out to be determined 
and (1) is proven• 

4. Scherrer constant expressions 

For powder samples, consisting of equal crystallites 
(equal means that the crystallites have the same size and 
the same shape), the assumption that cross-interference 
contributions are negligible allows us to write 

v ;  1 f dVl pr(rl +  fi)PF(q) 
R3 

V - 1  f d v  I P c ( r 1  Jr- r f i ) / g c ( Y l ) ,  
V 

(18) 

where pc(r) is now the characteristic function of a 
single crystallite [i.e. pc(r) = 1 only when the tip of 
r falls inside the considered crystallite] and V is the 
latter's volume (Ciccariello, 1990, §§II and HI). The 
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peak profile, observed around reflection h, is the Fourier 
transform of the right-hand side (r.h.s.) of (18). 

The relations existing between crystallites' 
shapes/sizes and Scherrer constants as well as the 
way of determining the latter from observed peak 
profiles have been thoroughly reviewed by Langford 
& Wilson (1978). Their definitions will now be 
recalled. The apparent crystallite sizes e K and eT, 
along reflection h, are related to the values of the first 
and second derivative of the corresponding OF at the 
origin by [see equations (5) and (9)* of Langford & 
Wilson (1978)] 

e K = - V / V h ( O  +) (19) 
it _~_ 

eZT = V/Vfi(O ). (20) 

The Scherrer constants /C K and K~ T are  dimensionless 
quantities related to the reciprocals of the former quan- 
rifles by 

2 t 
K~ K (L)e~l = (L)-  Vfi(0 +) (21a) 

/(:2= (L)2eT 2 = (L)- tVh(0  +) _= 12, (21b) 

where (L) represents an average linear ~ize of the 
particle obtained by the latter's volume through 

(L> - V U3. (21c) 

A further quantity All, the rotundity parameter (Wilson, 
1971), first introduced by Mitra (1964), is defined as 

.M = -Vfi '(0+). (22) 

A/I, being a dimensionless quantity, is independent of the 
particle size and only depends on the shape. It is recalled 
that (L)2)EK = S, where S is the area of the projection 
of the crystallite surface onto a plane orthogonal to h, 
the observed reflection (Wilson, 1962a). Moreover,/C T 
differs from zero only when edges are present on the 
crystallite surface and increases as the dihedral angles 
become smaller, as was first pointed out by Wilson 
(1962b) in introducing this quantity. [Actually, Wilson 
called taper the quantity/2 (=/C2).] So far, it appears 
that )E T and A// are explicitly known only for the 
following shapes: sphere and hemisphere, rectangular 
parallelepipeds and right prisms, tetrahedra, octahedra 
and right circular cylinders. For the hemispherical and 
cylindrical shapes, the /C T and A/I expressions were 
worked out by Wilson (1969) and by Langford & Lou~r 
(1982), while for the polyhedra the expressions were ob- 
tained by Wilson (1969, 1971) and by Edwards & Toman 
(1971) starting from the corresponding OF expressions 
worked out by Stokes & Wilson (1942). Numerical 
tabulations of K~K, ](~T and M are also available for 

* The l.h.s, of this equation lacks the exponent 2. The exponent is 
required for consistency with equations (19) and (27) of Langford & 
Wilson (1978). 

most of these shapes (Wilson, 1971; Edwards & Toman, 
1971; Langford & Wilson, 1978; Langford & Lou~r, 
1982). 

From (10a) and (15) of §3, it is possible to obtain 
the explicit expressions for E T and .M whatever the 
crystallite shape, provided the latter's surface consists 
of planar facets. To this aim, it is necessary to evaluate ,r-. +.  , , , .  +. 
Vfi(0 ) and Vfi(0 ). Since r = 0 +, the sum on the 
r.h.s, of (10a) will now involve the only pairs of facets 
that have one edge or one vertex in common. [See the 

aragraph below (10b).] Therefore, the expression for 
)(r), when .7" i and .7" t share a point or a segment, 

must first be obtained at r ~_ 0. The expression can easily 
be obtained by (15)-(17). In fact, the case of two facets 
having an edge in common can easily be obtained from 
Fig. 1. To this aim, it must be assumed that facet ,gri does 
not contain the portion on the left of segment A4A 4 and 
that this edge of f'i lies on axis z and coincides with edge 
B4B 1 of facet .F" t. The resulting configuration requires 
that in (13) and (14) 

2A4 = 2B1, (23a) 
2-,, (23b) A 4  - - -  ~ ' B 4  ' 

= x -" = :~x = 0, (23c) X A  4 A 4 

YB, = YBI = ?x = O, (23d) 

while the length of the edge in common is 

L i t  - -  Z , A  4 . . . .  ZA4- . (23e) 

It is noted that the case of two facets having only a 
vertex in common amounts to setting Lit  = 0 in (23e), 
i.e. to have 2 . = 2~, = 2A" = 2~ Consider first the 

A ~  , - , z  4 a-~4" 

case Lit > 0. From (15) and (16) at very small r 's, 

(~i • f i ) (~t  • fi) 

.[1 - (6" i • & t ) Z ] l / 2  
t 

× max[Lit - r (Wi t  + W~t ), 0], 

with* 

(24) 

WiJ = max[c2(hyc°t aij  - h~),c l]zu/s inai j  - hz] 

(25a) 
t t ^ t ^ 

W i j  = max[cz(hucotaij  - / z  ), czhu/sin aij  + hz]. 

(25b) 

For (24) to be written in a covariant way, it is first 
observed that the unit vectors of the considered Cartesian 

* Equations (24) and (25) coincide with equations (I-2.8), (I-2.9) and 
(I-2.20) but the following misprints must be corrected: cl and c2 must 
be interchanged in equation (I-2.9a); the 1 on the r.h.s, of equation 
(I-2.1) must be cancelled out. 
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axes can be expressed in terms of 5.i and 5.j by the 
following relations: 

5.; x 5.~ 5.j-5./(5.~ .5.~) 
= 5.{' ~ = 115.i x 5.;11' ~' = 115.{ x 5.;11 

(26) 

Then, let 6i, 1 (6i, 2) and  ej ,1 (£3j,2) denote the unit vectors 
t !  

of the edges coming out from B 1 = A 4 (B 4 = A 4) and 
lying, respectively, on ? i  and Uj. It is easy to show that 

ei , l  " (5.j x 5.i) 

c2 = {115./x 5.ill 2 -[&g,1 "(5.j x 5.g)12}1/2 (27a) 

, ~/,2 • (5.; x 5.~) 
~z = - {115./x 5.ill 2 - [~/,z • (5.j x 5.~)]2}1/z- (27b) 

t 

The expressions for c I and c 1 are obtained by substitut- 
ing 6i, i with 6j, 1 in (27a) and 6i, 2 with 6j, 2 in (27b), 
respectively. Hence, (25a) and (25b) become 

w ~  = ( ] - /115. /x 5.;11) 

- - ( f i ' 5 . j ) [ e i , 1  "(5. j  X 5./)] 

x m a x  {115./x 5.ill 2 -[~/ ,1 "(5.j x 5./)12}1/2, 

( f i"  5. / ) [%,1 • (5.; x 5.~)1 

{115.~ x 5.~112 - [%,1 "(5.,  × 5 . i ) ]2}1/2 

- ft .  (5.~ x 5.~)) ,  
\ 

(28a) 
/ 

! 

w , ~  = (1/115., x 5.;11) 

(fi" 5.j)[~,2 "(5.; x 5.~)] 
x m a x  {115./x 5.;112 -[~/ ,2 "(5.j x 5.g)]2}1/2, 

ft. (5.j x 5.~) 

(li. 5./)[%,2 . (5 . j  x 5./)1 
- x ;iF: E,;: (s;; ) 

(28b) 

Finally, constraints (17a) and (17b) simplify into 

1~.5"i > 0 and fi.5.j  < 0. (28c) 

The expressions for Vh(0 +) and V'h(0 +) are now 
obtained. Equation (24)shows that P~(])(0 +) is pro- 
portional to Lij, the length of the edge' shared by the 
relevant facets. Hence, by (20) and (21b), 

E~ = - (2/(L)) ~'[Lu(fi. 5./)(fi. 5.j)O(h. 5.i) 

x O(-h .  5.5)]/115. i x 5.ill. (29) 

Here, O denotes the step function, while the prime on the 
summation is a reminder that only pairs of facets having 
one edge in common are involved in (29). It should be 
noted that the contribution to K: T resulting from an edge, 
e.g. the one intersection of facets .7 i and .Tj, becomes 
very large when the dihedral angle between facets Ui and 
~ j  is close to 0 because the denominator tends to zero 
and the constraints relevant to the two step functions can 
be simultaneously fulfilled. (On the contrary, when the 
dihedral angle approaches 7r, one of the constraints is 
violated and the contribution becomes null.) 

In order to obtain the rotundity expression, it is 
first remarked that when the common edge has a finite 
length, function max, present on the r.h.s, of (24), simply 
reduces to L i j -  r (Wi j  +W'ij  ), provided r is sufficiently 
small, an this case, the derivative of P(~)(r) is the sum 
of contributions - W i j  and -W'i j .  Since each of these 
involves only the angles relevant to one of the ends 
of the common edge, - W i j  can be assigned to one 

t 

end and -Wi_. to the opposite end. In this way, the 
contributions t~ V'~(0 +) can be regrouped according to 
the vertices of the crystallite. In fact, for each vertex 12, 
one must consider the different pairs of facets meeting 
only at 12 and the pairs of facets that meet alon~ the 
edges coming out from 12. The contributions to Vf~ (0+), 
originating from the latter pairs, are proportional to the 
relevant Wij's .  In order to obtain those relevant to 
the first class of facet pairs, in (24) L i j  is assumed 
to be zero. Hence,, the contribution of P~(,3~)(r) will 
be -(14; i . + Wi j ) ,  provided this quantity is greater than 3 
zero. Therefore, wxth 

and 

12/(j3) __ Wi j (30) 

! t 

12(4) =_ (Wij  + W i j ) O ( _ W i  j - Wi j )  ' (31) 

A/[ will be given by 

All = 2 y'~ ~-~" {[((a . Oi)(fa . 5.j)O(h . d i ) O ( - h  . 5.j) ] 
V i<j 

x (llag x Ojll)-l}[12/~ ) + 12/¢)], (32) 

where the double prime on the summation is a reminder 
that only the facet pairs that meet at the considered 
vertex 12 must be considered. 

From (29) and (32), it is easy to recover the results 
already obtained by Wilson and co-workers. For fur- 
ther illustration, the numerical values of the Scherrer 
constants and of the rotundity have been calculated by 
(29) and (32) for the dodecahedron, the icosahedron 
and a triclinic parallelepiped. The calculations, rather 
straightforward by a computer, require only some care 
in labeling all the vectors involved in (28). The results* 
for a triclinic parallelepiped are reported in Table 1 while 

* The related computer program will be made available on request. 
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Table 1. Triclinic parallelepiped 

The triclinic cell is characterized by the angles: arccos(a • b) = rr/5, arccos(a • c) = r / 4  and arccos(b • c) = rr/3, while the edges of the 
parallelepipeds are respectively equal to Na, 2Nb and 3Nc, N being an arbitrary positive integer. The first column reports the h components 
in units of the reciprocal space. The corresponding values of/CI¢,/CT and .A4 are reported in the second, third and fourth columns, respectively. 

hkl l~t¢ ICT A~ hkl ICK 1CT All hkl ICI~ ICT A/t 
(100) 4.1051 2.7938 4.9189 (321) 3.9605 2.7138 3.8238 (430) 2.9694 1 . 8 2 9 3  3.7918 
(110) 2.2282 1 . 4 0 7 3  2.2848 (32i) 4.1570 2.8896 5.5769 (430) 4.0924 2 . 8 3 1 1  4.7632 
(1i0) 4.0541 2.8115 4.6987 (322) 2.2568 1 . 1 7 2 8  0.5807 (431) 2.7816 1 . 6 3 1 7  2.5289 
(111) 0.7298 0.5412 0.2575 (322) 3.1843 2 . 0 9 7 1  5.8989 (43i) 3.0247 1 . 9 1 5 1  4.7666 
(11 i) 2.4725 1 . 5 4 2 9  4.6382 (322) 3.6988 2.5018 2.7016 (431) 3.9938 2.7466 4.0876 
(1 i 1) 3.3675 2.2568 1.8404 (322) 4.1494 2.8960 6.2577 (43i) 4.1431 2.8789 5.3036 
(111) 4.1318 2.9000 6.4681 (331) 1 . 8 5 6 3  1 . 2 2 3 1  1.1254 (432) 2.3286 1 . 2 2 1 8  1.0831 
(210) 3.6327 2.3780 4.6336 (33i) 2.3558 1 . 4 4 1 6  3.4773 (432) 3.0247 1 . 9 4 8 9  5.3265 
(2i0) 4.1245 2.8434 4.7869 (331) 3.9112 2 . 6 9 2 1  3.8360 (432) 3.8366 2.6179 3.2906 
(211) 3.2808 2.0364 2.0003 (33i) 4.1268 2 . 8 7 7 1  5.3564 (432) 4.1573 2.8986 5.8736 
(21i) 3.5280 2.3579 6.2176 (332) 1 . 0 6 5 7  0.7107 0.2072 (433) 1 . 5 8 6 4  0.6285 0.1509 
(2_i I) 3.8614 2.6208 3.1826 (332) 2.4014 1 . 4 4 9 7  4.1977 (433) 3.0038 1 . 9 5 8 9  5.6356 
(211) 4.1551 2.8888 6.0871 (332) 3.6835 2.5083 2.8361 (433) 3.6146 2.4399 2.4687 
(221) 1 . 5 1 4 0  1 . 0 1 8 5  0.5920 (332) 4.1471 2.9025 5.9677 (433) 4.1454 2.8980 6.3234 
(22i) 2.3788 1 . 4 3 7 7  3.8841 (410) 3.9706 2.6665 4.7803 (441) 1 . 9 8 4 3  1 . 2 9 2 5  1.4190 
(221)__ 3.8085 2.6087 3.3460 (4i0) 4.1377 2.8382 4.8749 (44i) 2.3367 1 . 4 3 9 9  3.2290 
(221) 4.1423 2.8940 5.6562 (41 I) 3.9218 2.6025 3.4616 (441) 3.9544 2.7277 4.0684 
(310) 3.8869 2.5932 4.6661 (41i) 3.9292 2.6598 5.8314 (44i) 4.1142 2.8650 5.2123 
(3i0) 4.1366 2.8429 4.8401 (4il) 4.0545 2.7603 3.9561 (442) 1 . 5 1 4 0  1 . 0 1 8 5  0.5920 
(311) 3 . 7 8 7 1  2.4772 3.1040 (4ii) 4.1513 2.8628 5.6774 (442) 2.3788 1 . 4 3 7 7  3.8841 
(31 i) 3.8169 2.5754 6.0948 (420) 3.6327 2.3780 4.6336 (442) 3.8085 2.6087 3.3460 
(3_il) 4.0010 2.7220 3.7090 (420) 4.1245 2.8434 4.7869 (442) 4.1423 2.8940 5.6562 
(311) 4.1552 2.8744 5.8413 (421) 3.5668 2.2903 3.2968 (443) 0.9619 0.7175 0.3089 
(320) 3.2316 2.0461 4.2007 (42i) 3.5979 2.3844 5.6218 (443) 2.4236 1 . 4 7 7 8  4.3312 
(320) 4.1042 2.8363 4.7774 (421) 4.0306 2.7606 4.0656 (443) 3.6126 2.4517 2.5930 
(321) 3.0074 1 . 8 1 1 5  2.3791 (42i) 4.1602 2.8819 5.5014 (443) 4.1460 2.9040 6.1077 
(32i) 3.2375 2.1012 5.3757 

those relevant to dodecahedra and icosahedra are shown 
in Figs. 2 and 3. 

5. Functional expression of peak profiles 
Our last remark concerns the functional form of the 
peak profiles scattered by a powder sample of equal 
crystallites with planar facets. The basic relation between 
the OF and the peak profile Ih(S) around reflection h is 
(Guinier, 1963; Wilson, 1962a) 

i h ( s )  - ± h ( s ) / c  
o o  

= V -1 f exp(iqt)Vfi( t)  dt (q -- 2~rs), (33) 
- - O O  

C being a suitable normalization constant. The parity 
property (4b) yields 

ih(S) = (2 /V)  f Vfi(t)cos (qt) dr, (34) 
o 

and from the condition Vfi(0) = V it follows that 

o o  

27r f i h ( S ) d s =  1. (35) 

For this reason, ih(S) is referred to as the normalized 
peak profile. 

The most general expression of a peak profile is im- 
mediately obtained by substituting (1) into (33). Straight- 
forward calculations yield 

ih(S) /2  = S / V q  2 - f l 4 /Vq  4 
N 

+ ~ {[2-1,icos (qDi)]/q 2 
i=1 

+ [Z2,isin (qDi)]/q 3 

+ [•3,iCOS ( q D i ) ] / q 4 } / V ,  

where 

(36) 

1-1, / -- Fi, i_ i -- _Fi, i + 21"2,i_1(D i - Di_ i )  

+ 3F3,i_i(D i - Di_ i )  2, (37a) 

2 2 ,  - _ 2[rz, _ i - r 2 ,  + 3F3, i_i (D i - Di_l)] ,  

(37b) 

2-3, i = - 6(F3,i_ z - F3,i), 

with 

Fe, N ~ 0 ,  

(37c) 

g = 1,2,3.  

Here, S = lCK(L) 2 is the area of the projection of the 
particle onto a plane orthogonal to h. In obtaining (36), 
conditions (5) resulting from the continuity of Vfi(r) 
have been taken into account. For this reason, no F0, i 
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is present in (36). It is stressed that (36) is an exact 
result for locally planar interfaces. Therefore, it makes 
sense throughout the physical range [0, oe] of q and the 
singular contributions exactly cancel as q ~ 0. It is 
recalled that equation (10.71) of Wilson (1970) contains 
in nuce result (36). Indeed, the planarity of facets ensures 
that his Vh(t) (i.e. the fourth derivative of the OF) 
is identically null so that the integral contribution in 
(10.71) vanishes. The evaluation of the remaining terms 
requires that first-order discontinuities of Vfi(t), Vh(t) 
and Vh'(t) are properly taken into account. Ultimately, in 
fact, these are responsible for the contributions present 
on the r.h.s, of (36). It is also remarked that altogether 
the three peak profiles* reported by Grebille & Brrar 
(1985) contain the terms present in (36). The last remark 
concerns the fact that it can reasonably be expected that 
the oscillatory contributions, present in (36), average to 
zero at large q. In this way, only the first two terms 
on the r.h.s, of (36) need be taken into account when 
the tails [see §VI of Ciccariello (1990)] of peak profiles 
are analyzed. A simple best fit would determine both the 

* These have to be multiplied by 2 if A gives the area of the right 
section of the prism. 

surface (cx/CK) and the rotundity (3//) of the crystallite, 
while ](~T Can be determined either by the sum rule, 
first noted by Porod (1967) in the small-angle scattering 
realm and generalized by Ciccariello (1990) to the case 
of wide-angle scattering, or by the procedure described 
by Wilson (1971). 

Finally, the more realistic case of polydisperse sam- 
ples of crystallites with equal shapes and different sizes 
L can be treated in the usual approximation of consid- 
ering only self-interference effects of particles with the 
same size. Let p(L) denote the normalized number den- 
sity of the particles with sizes ranging in the infinitesimal 
interval [L, L + dL]. Then, it appears more likely that 
the oscillatory contributions on the r.h.s, of (36) average 
to zero, while the q-2 and q-4 coefficients on the r.h.s. 
of (36), respectively, become 

(x:) 

(Sfi/V)I f L-Zp(L) dL 
o 

and 
O 0  

.A,4fi / L-3p(L) dL, 
o 

I4 - -  1.4 

1.3 
1.3 1.3 - -  

¢ 

\ '  

1 . 3 ~  
1 . 3 ~  

1,4 

j - - - ' -  1.1 

/ 0.9'3 

0.9 0.85' 

0.75 

J ~  

0.75" n.,It 

0.9 

0.33 
0.;?.6" 

°~ 

o 

• ~ 

ol -° 
0.063 

0.13' 

0.26 

0.39 

0 ¢ 2rr/5 0 ¢ 27r/5 0 ¢ 27r/5 
(a) (b) (c) 

Fig. 2. (a), (b) and (c) respectively show the relief lines of/CK, K:T and A4 for a dodecahedron in terms of the polar (0) and longitudinal 
(0) angles of la with respect to a Cartesian frame having its origin at the center of the dodecahedron, the z axis orthogonal to one facet 
and the (wz, z > 0) half-plane going through a vertex of the considered facet. 
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71" 7l" 

0 0 
0 4~ 2zr/5 0 q~ 27r/5 0 4' 2rr/5 

(a) (b) (c) 

Fig. 3. (a), (b) and (c) respectively show the relief lines of/C/f, AST- and M for an icosahedron in terms of the polar (0) and longitudinal 
(4~) angles of fa with respect to a Cartesian frame having its origin at the center of the icosahedron, the z axis going through a vertex and 
the (:cz, z > 0) half-plane bisecting one side of the (upper) regular pentagon parallel to the :ey plane. 

where subscript 1~ makes the dependence of  the quantity 
on 1~ more evident and subscript 1 denotes that the ratio 
refers to a crystallite of  size L = 1. Since the integrals do 
not depend on the considered reflection while (8 f i /V) l  
and A//fi do, the analysis of  different peak profiles allows 
one to determine the ratios ( 8 f i / V ) l / ( S f i , / V ) l  arid 
.A4fi/.Mfi, independently of  the particle distributions. 
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