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Abstract

For powder samples made up of crystallites with pla-
nar facets, the domain where the overlapping volume
function is defined can be split into intervals where the
overlapping volume function turns out to be a cubic.
A method of calculating the coefficients of each cubic
function is illustrated. The coefficients of the cubic,
relevant to the interval containing the origin, are related
to Scherrer constants K,, K, and to the rotundity
parameter M. Their expressions are worked out and
numerically illustrated for dodecahedra, icosahedra and
triclinic parallelepipeds. The general functional expres-
sion of peak profiles relevant to planar facets is also
given.

1. Introduction

The peak profile [= I, (s)] around a reflection h =
(h, k,1) is fully determined by the only interphase sur-
face when the crystallites, constituting the powder sam-
ple, have a negligible lattice disordert (Wilson, 1962a;
Guinier, 1963). In reality, this condition is rarely met
and might explain why the interest in finding explicit
relations between peak profiles and geometrical fea-
tures of interfaces have considerably decreased since
the early 60’s, when most of the presently available re-
sults (Wilson, 1970) were obtained. Nonetheless, further
theoretical results on this issue can be obtained under
the rather mild assumption that a sample’s crystallites
have planar facets. This configuration was analyzed by
Grebille & Bérar (1985) under the further assumption
that crystallites have a convex polyhedrical shape. These
authorsi showed that each polyhedral crystallite can
be decomposed into triangular truncated prisms and
reported the peak profile expressions for the three pos-
sible shapes of the resulting triangular truncated prisms.
These expressions depend on the lengths of the three
edges parallel to the considered reflection direction.

1 Of course, it is assumed that the corrections related to background
scattering, wavelength dispersion, finite size of the collimation slits
and other geometrical factors have been taken into account.

} We are grateful to the referee who brought this paper to our attention.
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[See their equations (6), (8) and (9).] In this way,
the general expression of peak profiles for samples
consisting of equal convex polyhedra was obtained in
terms of the lengths of the parallel edges resulting from
this decomposition.

The aim of this paper is to make the analysis of
this geometrical configuration more complete by using
a general property of the corresponding overlapping
volume function [V';(r)], more simply referred to as
the overlap function (OF). The OF yields the volume
common to the filled parts of the sample and of the
‘ghost’ resulting from the translation of the sample by
r along h, the direction of reflection h. The general
property of the OF that will be proven in this paper is:
for samples made up of crystallites with planar facets,
the overlap function V() is

3
Vi(r) = 120 I — D,),

D,<r<D;,, i=0,1,...N -1 ¢))
In other words, the interval [0, R, ], where Vi(r) is
defined, splits into the subintervals [D;, D, ,], i =
0,1,...,N — 1, with D, = 0 and Dy = R,,,, and
in each of these Vi(r) is a cubic function. Wilson
(1962a) has already remarked that the OF is a cubic
for rectangular parallelepipeds, tetrahedra and octahedra.
According to (1), this property simply follows from
the planarity of the facets. Moreover, (1) also implies
that the inverse Fourier transforms of the peak profiles
reported by Grebille & Bérar (1985) must have the
analytic expression (1) because the profiles are relevant
to particles with planar facets; this could be used to
prove (1). However, the present analysis is based on the
integral expression of the second-order derivative Vi, (r)
of the OF. This approach presents three advantages:
(i) the convexity assumption can be removed; (ii) the
explicit functional expression of V;(r) can be obtained
in terms of geometrical parameters more directly related
to the interface geometry, i.e. the dihedral angles, the
angles between the edges entering each vertex and the
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lengths of the edges; (iii) the expressions of Scherrer
constants K., K, as well as that of M, the rotundity
parameter (see e.g. Langford & Wilson, 1978), are
also obtained; they are simply related to coefficients
I 1,00 I. 2.0 and I. 3,00 whose explicit expressions will be
evaluated later.

The paper is organized as follows. §2 reports some
general definitions required by the analysis to be carried
out in the following sections. Result (1) is worked out in
§3. The explicit expressions for K, K, and M as well
as a numerical application of these formulae to the cases
of dodecahedra, icosahedra and triclinic parallelepipeds
are reported in §4. Finally, the implications of (1)
in determining the analytic form of peak profiles are
discussed in §5.

2. Basic formulae

The overlap function Vj(r) is related to the so-called
oriented stick probability function (OSPF) vy, (r), defined
as (Ciccariello, 1985)

(r)=Vg! [ dv, pp(r, +rh)pp(r), (2a)
R3
by the simple relation
Va(r) = Vpr(r/|b)) (2b)

(see Ciccariello, 1990, §§1I and II). Here, V. denotes
the total volume of the only crystallites of the sample
(i.e. V. is the volume of the filled part of the sample)
while function p(r) is defined as being equal to 1 when
the tip of r falls inside the filled part of the sample and
equal to O elsewhere. The definition of v, () generalizes
that of the correlation function introduced by Debye,
Anderson & Brumberger (1957) in the realm of small-
angle X-ray scattering (SAXS). Indeed, since definition
(2a) makes sense even when h is not a point of the
reciprocal lattice, the SAXS correlation function is the
angular average, with respect to all possible orientations
of h, of the OSPFs , (7). Since the latter is proportional
to the OF at the lattice points, it appears evident that
small- and wide-angle scattering are strongly related
(Ciccariello, 1990).
Equation (2a), in terms of Dirac’s function, reads

o(r;+rh—ry).  (3)

() =VE [ dv, [ dv,
\%3

VF

Equations (2) and (3) show that 7, (r) only depends on
the geometry of crystallite boundaries and on the latter
disposition in the space, when these are observed along
direction h = h/|h|. They also imply that

peZt, (4a)

(4b)

Ypu(r/P) = (),
(r) = 1m(-7).
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These properties will be referred to as the scaling and
the parity properties. Moreover, (3) ensures that v, (7) is
such that, at any point r, v, (r~) = ¥, (r*). Then, with
the assumption that (1) has already been proved, from
(2b) at r = D,, V(D) = V(D). Hence,

t=12,...,N-1

(%)

Owing to the property v, (0) = 1, from (2b) and (1) at

D0 = 0, it follows that FO o = V- Then, (5) can be

used in order to determine recurs1ve1y all the remaining

Iy ;’s with ¢ > 0. It turns out that each I, ;, with 7 > 0,

dependsontheF ’s with 1 <l<3and0<3 <i-—-1,
as well as Vp (= It o)

In order to prove (1) and to obtain a method of
calculating the I, .’s, it is convenient to recall the
integral expressions of the first and second derivatives
of OSPF worked out by Ciccariello (1985):

3
IZ%)[‘I,i—I(Di - Di—l)l =TI

0,57

’Yh f dS, (h-6,)pp(r; +7h)/Vp 6)

Yu(r) = —Sf ds, (h-4,)

x [dSy(h-6,)0(r; +rh—1,)/Vp. ()
SF

Here, S denotes the interface, i.e. the surface bounding
the filled part of the sample, and 6, (i = 1, 2) denotes the
unit vector orthogonal to dS; and pointing outwardly to
the filled region.

3. The local cubic structure

The proof that the OF behaves in each interval as a
cubic function can be obtained from (7) by exploiting
the property that the interface consists of N planar
facets. The analysis closely follows a recent paper by
Ciccariello & Sobry (1995), devoted to some SAXS
aspects of the problem and referred to as paper I in the
following. Let F; denote the ith planar facet of interface
Sp so that Sp = U F; Then, by (2b) and (7), the
second derivative of V~( ) splits into a sum of integrals,
ie.

1" N
Vi(r) = ,_Zfé?(r), ®)
1=
where
PA(r) = —]ids1 (h-6,)
x [(h-6,)dS,6(r; +rh—1,) 9
F;

is the contribution to the second derivative owing to the
facet pair (4, j). [The dependence on h is not reported on
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the left side of (9) for notational simplicity.] From (9), it
is evident that P2)(r) = P?(r) and P(2)(7‘) 0. (The
latter follows fro the fact the 1ntegrand is null because
Dirac’s function requires that Th = r; — r, and, since r,
and r, are points of ¥, 7h turns out to be orthogonal
to 6,.) Then, (8) becomes

(10a)

The proof of (1) is trivial once it has been shown that the
range of r’s, where each P, ?(7‘) is defined, splits into
subintervals [D,; ., D, k+1] with D, < D, k) and
k=0,1,. (NU 1), and that in each of these 7 2)(r)
turns out to be a linear r function. Indeed, assume ’ that
this result has already been proven. Then,

=0, DN] = U

1<i<j<N
0<k<(Ni;—1)

0,R

) [Dij,kv Dij,k+1]’

Consider now the finer decomposition resulting from the
intersection operations

[Dij,k’Dij,kH] ﬂ Dz’:’ k"D'J',k'+1]

for all possible values of the involved indices. By
so doing, the interval [0, R, | will be split into the
subintervals [D;, D, ] (with D; < D, ,, D, = 0 and
1 =0,1,...,N — 1) such that in each of these each

(3)(7") has a well defined linear expression (eventually
equal to zero). Consequently, the (linear) expression of
Vh(r) turns out to be determined in each subinterval
[D;, D, ] by (10a). Then, two subsequent quadratures

yield
Rmax

f (r—t)Vv

and the explicit cubic expression (1) of V(r) is ob-
tained in the subinterval [D;, D, ] in which the con-
sidered 7 value lies. Thus, the proof of (1) will be
accomplished once the linear r dependence of each
’P(z)(r) and the associated subintervals havel been de-
tenmned

To achieve this goal, consider a pair of facets, say
F; and F; with ¢ # j, lying on planes II; and 1.
These can be commdmg, parallel or intersecting. In the
first case, P@ (r) is 1dentlca11y equal to zero for the
same reason that P{2)(r) = 0. For the other cases, it
is noted that (9) ensures that P(i)(r) can differ from
zero only when F;, translated by rh, intersects F.
[ThJS condition is requ1red by the Dirac function present
in the integrand of (9). For later convenience, it is also
noted that, when 7 = 0, the same function will require
that F; touches F; for P(2)(r) to be different from zero.
Then, clearly, if the contact takes place at a point, this
will be a vertex of the interface while, if it takes place

£ () at (10b)
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along a segment, t}us will be (part of) an edge.] Thus, in
the second case, P{?)(r) is equal to zero unless r is equal
to the distance (evafuated along direction h) of IT, ; from
I1;, a possibility that will be assumed not to take place
in the following for reasons of simplicity.* The last case,
that of intersecting II; and IT o is the most interesting
one. In this case, I, and II. can be restricted to the
half-planes containing facets F; and F ;- Fig. 1 depicts
a typical configuration where facet 7, translated by rh,
intersects facet . The superposing segments shown in
bold, lie respectively on lines a and b parallel to 00,

the intersection line of the two half-planes. When 7 is
slightly increased, lines @ and b will move respectively
towards the right and the left of the figure. Owing to the
polygonal shape of the F; and . ; boundaries, the length
of the intersection segment will be a linear function of r,
whose numerical coefficients depend on the sides of F;
and 7, that delimit the superposing segments. Further,
the ﬁgure makes it evident that the sides do not change as
7 varies in an interval such that a moves inside one of the
intervals [A,, Al ), and, simultaneously, b moves inside
one of the [B B’ g)’s. {Point A, (B)) is the orthogonal
projection of vertex A, (B) of .7-' (.7-' ) on the axis X
(Y) Moreover the extrema of each 1ntcrval for instance
(A4, A2] or [Bl, By, are nearest-neighbor points on X
or on Y.} These properties and the fact that integral (9),
for simple dimensional reasons, is proportional to the

* Indeed, »\Shenever this happens, at this particular value, denoted
by ro, P, (r) is proportional to &(r — 7o) and the proportionality
coefficient depends on the area of the overlapping surfaces between
F; and F;, translated by roh (Ciccariello, 1985). Hence, these 6-like
contributions are known and can be simply accounted for, though the
final expression of the OF will be slightly more involved.

Ay
A\
&
; N
N
/ ’ ¢ oo /
/ B,/ /Q’ ~" ~ -
// ,/ ‘v\ ~ LS _
/ % & ° ,/ // (Y X EX
8 h A/
bif ! ,‘Q Lo
i A / /£ “ Y
A () /
/
K, Ay
T,
A, ¢
b o
282 a
Fig. 1. Planar facets F; and F; are delimited by polygons
Ay, Ag,...,As and By, Ba, ..., By, respectively. They lie on

the half-planes IT; and I1;, intersecting along =. Cartesian systems
QOayz and OXY Z = QOaY': are right-handed and the first is
also orthogonal. The small bold segment of F;, lying on line a
parallel to z, translated by rh, superimposes the bold segment of
F;, lying on line b.
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length of the intersection segment, ensure the linearity
of 'Pz(z)('r) and allow the determination of the different
subintervals as well as that of the coefficients of the
relevant linear functions. Hence, the proof of (1) could
already be considered accomplished.

However, for greater completeness, the contributions
to ’PL(ZJ) (r) owing to the portion of the F; facet, delimited
by the condition

Ty =24, <7 <Ta, =Tp, an
and to the J; portion, delimited by
YIEYB;<y2<YB;EYF (12)

(see the hatched portions of Fig. 1), will now be ex-
plicitly worked out. The equations of (the relevant parts
of) sides A,A; and A, A, are

Zy(zy) = ey —Zp) + 24, (13a)

’

Zy(z)) = —c;(zl - Z;) +zal (13b)
Here, ¢, = cot,, clz = cot ’y;, while v, and 'y'2 are the
angles formed by A A, and A A, with z and -z,
respectively. Similarly, the equations of (the relevant
parts of) sides B, B, and B, B, are

z,(Y,) = ¢, (Y, - ) + ZB, (14a)

5;(Y2) = —C;(Yz - Y)) + 25, (14b)
where ¢; = coty, (c'l = cot 'y'l), Y (fyll) being the angle
formed by B, B, (B,B,) with Z (—Z). The contribution
to Pz(g) (r) from the considered portions of ; and 7 is

PP Yr 2;(),2) Zp 5’1(3?1)
—(h-8,)(h-6,) [dY, [ dzp [do, [ dz

Yr z2(Y2) zs Z1(z1)
x 6(r, +rh —r,).

Moreover, r, = (24,0, 2), r, =
(Y,cos aij,stinaij,z2), with cos ;= G, &j. The
integral is evaluated by the procedure expounded in
Appendix A of L Its final expression is
—{[(h-6i)(h-&j)]/sinaij}max[Lmax—L 0], (15)

min?

where

~

L_, =min[z, (rfly cota,; —rm,)+rh,;

le(rizy/sin ;)] (16a)

L= max[Zl(rﬁy cota,; — rh,) +rh;

zy(rh, /sin ;)] (16b)
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with the following constraints on 7:

Y sina, . Tpsina, .
. F F
r < min — e =R,
k., h,cosa;; — h sina; |
(17a)
Y;sinco, Z,sino,; ]
I
7 > max — = ! 7 =R,
h,cos a;; — h,sina;; |
(17b)
and

h= (b by ).

It is emphasized that (15) is a linear r function, owing to
definitions (16a), (16b), (13) and (14). Clearly, whenever
constraints (17a) and (17b) were not simultaneously
obeyed, the considered portions of the pair of facets F;
and F; would yield a null contribution to P)(r). In
contrast, interval [R,, R,] splits into two subintervals
[R,,R] and [R, R,], depending on the value assumed
by (15). Only the subinterval where inequality L _, >
L., takes place must be considered, otherwise the con-
tribution to sz)(r) is null. In general, this subinterval
splits into smaller subintervals determined by the values
of L, and L . resulting from definitions (16a) and
(16b). In this way, the r subintervals and the associated
expressions for the contributions to Pl(r‘;) (r) arising from
the considered portions of the pair of facets F;and F;
are obtained. In any case, these contributions are linear r
functions. Of course, in order to fully determine 'Pz(’zj)(r),
the contributions arising from all the other possible pairs
of the remaining portions of 7, and 7; must be taken
into account. Their evaluation can be similarly carried
through. In this way, the linear expressions for 'Pl(zj)(r)
and the corresponding r intervals [whose extrema are
the D, ik S used below (10a)] turn out to be determined
and (1) is proven.

4. Scherrer constant expressions

For powder samples, consisting of equal crystallites
(equal means that the crystallites have the same size and
the same shape), the assumption that cross-interference
contributions are negligible allows us to write

Vit fsdv1 pr(ry +rf1)pF(r1)
R

~ V=1 fdu, p (r, +rh)p,(r)), (18)
Vv

where p (r) is now the characteristic function of a
single crystallite [i.e. p,(r) = 1 only when the tip of
r falls inside the considered crystallite] and V is the
latter’s volume (Ciccariello, 1990, §§II and III). The
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peak profile, observed around reflection h, is the Fourier
transform of the right-hand side (r.h.s.) of (18).

The relations existing between crystallites’
shapes/sizes and Scherrer constants as well as the
way of determining the latter from observed peak
profiles have been thoroughly reviewed by Langford
& Wilson (1978). Their definitions will now be
recalled. The apparent crystallite sizes ez and &,
along reflection h, are related to the values of the first
and second derivative of the corresponding OF at the
origin by [see equations (5) and (9)* of Langford &
Wilson (1978)]

ex =—V/Vi(0")
€2 = V/Vi(0h).

19)
(20)
The Scherrer constants X and K. are dimensionless
quantities related to the reciprocals of the former quan-
tities by

Ky = (Lext = (L)7*Vi(0%)

K3 =(L)’ep® = (L)"'VR(0%) = L,

la)
21b)

where (L) represents an average linear §ize of the
particle obtained by the latter’s volume through

(L) =

A further quantity M, the rotundity parameter (Wilson,
1971), first introduced by Mitra (1964), is defined as

1"

M = -Vi(0F).

V173, (21c)

(22)

M, being a dimensionless quantity, is independent of the
particle size and only depends on the shape. It is recalled
that (L)%K, = S, where S is the area of the projection
of the crystallite surface onto a plane orthogonal to h,
the observed reflection (Wilson, 1962a). Moreover, KL

differs from zero only when edges are present on the
crystallite surface and increases as the dihedral angles
become smaller, as was first pointed out by Wilson
(1962b) in introducing this quantity. [Actually, Wilson
called taper the quantity £ (= K2).] So far, it appears
that K, and M are explicitly known only for the
following shapes: sphere and hemisphere, rectangular
parallelepipeds and right prisms, tetrahedra, octahedra
and right circular cylinders. For the hemispherical and
cylindrical shapes, the K, and M expressions were
worked out by Wilson (1969) and by Langford & Lougr
(1982), while for the polyhedra the expressions were ob-
tained by Wilson (1969, 1971) and by Edwards & Toman
(1971) starting from the corresponding OF expressions
worked out by Stokes & Wilson (1942). Numerical
tabulations of K, K and M are also available for

*The Lh.s. of this equation lacks the exponent 2. The exponent is
required for consistency with equations (19) and (27) of Langford &
Wilson (1978).
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most of these shapes (Wilson, 1971; Edwards & Toman,
1971; Langford & Wilson, 1978; Langford & Louér,
1982).

From (10a) and (15) of §3, it is possible to obtain
the explicit expressions for K. and M whatever the
crystallite shape, provided the latter’s surface consists
of planar facets. To this aim, it is necessary to evaluate
Vi(0%) and VE(0%). Since r = 0%, the sum on the
r.hs. of (10a) will now involve the only pairs of facets
that have one edge or one vertex in common. [See the
paragraph below (10b).] Therefore, the expression for
P3(r), when F; and F, share a point or a segment,
must first be obtained at r ~ ~ 0. The expression can easily
be obtained by (15)-(17). In fact, the case of two facets
having an edge in common can easily be obtained from
Fig. 1. To this aim, it must be assumed that facet J; does
not contain the portion on the left of segment A A and
that this edge of 7, lies on axis z and coincides W1th edge
B, B, of facet ]—' The resulting configuration requires
that m (13) and (14)

Za, =Zp,, (23a)
Zal =Zp,, (23b)
Ty, =Tal —:EI—O (23¢)
Yg, =Yg =Y; =0, (23d)
while the length of the edge in common is
Lij =ZAl =2y, (23e)

It is noted that the case of two facets having only a
vertex in common amounts to setting L = 0 in (23e),
Le.tohave z, =2zp =2Zz4" =2Zp. Consider first the
case L > 0. From (15) and (16) at very small r’s,

(&i : ﬁ)(&j ' ﬁ)
o= 6772

r(W,; + W),

) () =
PI,J (’I‘) -

x max[L,; — 0, (4

with*

W, = max[c2(ﬁycot o~ h,), clfLy/sin o — h,)
(25a)

h.), c;izy/sin o+ izz].
(25b)

’

W;; = max|c,(h,cotr;; —

For (24) to be written in a covariant way, it is first
observed that the unit vectors of the considered Cartesian

* Equations (24) and (25) coincide with equations (I-2.8), (1-2.9) and
(I-2.20) but the following misprints must be corrected: ¢; and ¢ must
be interchanged in equation (I-2.9a); the 1 on the r.hs. of equation
(I-2.1) must be cancelled out.
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axes can be expressed in terms of &; and a by the
following relations:

(26)

Then, let &; ; (€; ,) and &; , (€, ;) denote the unit vectors

of the edges coming out from B =A, By = A, ) and
lying, respectively, on F; and F . It is easy to show that

&, (6;x0,)
{llo; x 6;|1> = [&;, - (o; x
Cl _ Az2 ( xXo
27 {lle; x5, —[elz (6; x 6,)1?}/?

e = 27a)

X 0. )]2}1/2
g:)

(27b)

The expressions for ¢; and cl1 are obtained by substitut-
ing &, 1 with &; , in (27a) and &, , with &; , in (27b),
respectrvely Hence (25a) and (25b) become

W, = (1/lle; x &jll)
< max —(h-8,)[¢;, - (6;x6,)]
{llo; x 6112 —[&;, - (6, x 6,)]2}/%
(b)), (6;x6)]
{lle; x ;112 —[&;,-(d; x ,))2}1/2
- h- (5 a,.)>, (28a)
Wy, = (1/l6; x 6,

o ( (he6)le,- (5, %6)
(6,75, — 18, (6, x 3P}/

h- (6j X &;)
(B-6)e;- (6, % 6]
6% 6, —Tej, (6, X G)PY )

(28b)
Finally, constraints (17a) and (17b) simplify into
h-6,>0 and h-6,<0. (28¢)

The expressions for Vi(0") and V'3(0") are now
obtained. Equation (24) shows that P%(0%) is pro-
portional to L, the length of the edge shared by the
relevant facets. Hence, by (20) and (21b),

- UL [Ly(h-6,)(h-6,)0(h-6;)

i<j
x O(=h-&,)|/118; x &,]. 29)
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Here, © denotes the step function, while the prime on the
summation is a reminder that only parrs of facets having
one edge in common are involved in (29). It should be
noted that the contribution to X resulting from an edge,
e.g. the one intersection of facets F; and F;, becomes
very large when the dihedral angle between facets ; and
F. is close to 0 because the denominator tends to zero
and the constraints relevant to the two step functions can
be simultaneously fulfilled. (On the contrary, when the
dihedral angle approaches m, one of the constraints is
violated and the contribution becomes null.)

In order to obtain the rotundity expression, it is
first remarked that when the common edge has a finite
length, function max, present on the r.h.s. of (24), simply
reduces to L, . —r(W,; +W ;)» provided r is sufficiently
small. In this case, the denvatlve of P(?( r) is the sum
of contributions —W, . and W . Since each of these
involves only the angles relevant to one of the ends
of the common edge, — W, can be assigned to one
end and W to the opposite end. In this way, the
contributions to V'(0") can be regrouped according to
the vertices of the crystallite. In fact, for each vertex V,
one must consider the different pairs of facets meeting
only at V and the pairs of facets that meet along the
edges coming out from V. The contributions to Vi (0%),
originating from the latter pairs, are proportional to the
relevant W, .’s. In order to obtain those relevant to
the first class of facet pairs, in (24) L,; is assumed
to be zero. Hence, the contribution of P(3)(r) will

-W; + W ;) provided this quantity is greater than
Zero. Therefore, wrth

v =w; (30)
and
V) = Wy + WB(-Wy; = Wy), - G
M will be given by
= 2%:%"“( ¢,)(h-5,)0(h-6,)0(~h-5))]
x (16; x &, 1DV + VL (32)

where the double prime on the summation is a reminder
that only the facet pairs that meet at the considered
vertex ¥V must be considered.

From (29) and (32), it is easy to recover the results
already obtained by Wilson and co-workers. For fur-
ther illustration, the numerical values of the Scherrer
constants and of the rotundity have been calculated by
(29) and (32) for the dodecahedron, the icosahedron
and a triclinic parallelepiped. The calculations, rather
straightforward by a computer, require only some care
in labeling all the vectors involved in (28). The results*
for a triclinic parallelepiped are reported in Table 1 while

* The related computer program will be made available on request.
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Table 1. Triclinic parallelepiped

The triclinic cell is characterized by the angles: arccos(a - b) = /5, arccos(a - ¢) = /4 and arccos(b - ¢) = 7/3, while the edges of the
parallelepipeds are respectively equal to Na, 2Nb and 3N¢, N being an arbitrary positive integer. The first column reports the h components
in units of the reciprocal space. The corresponding values of K ¢, K7 and M are reported in the second, third and fourth columns, respectively.

hkl Kx Kr M hkl Kx
(100)  4.1051  2.7938  4.9189 (321)  3.9605
(110)  2.2282 1.4073 2.2848 321)  4.1570
(110)  4.0541  2.8115  4.6987 (322)  2.2568
(111) 07298 05412  0.2575 (322)  3.1843
11T) 24725 1.5429  4.6382 (322)  3.6988
(111) 3.3675 2.2568 1.8404 (322)  4.1494
(11) 41318 29000  6.4681 (331) 1.8563
(210)  3.6327 23780  4.6336 (331)  2.3558
(210)  4.1245  2.8434  4.7869 (331) 39112
(211) 32808 20364  2.0003 (331)  4.1268
(21T) 35280 23579  6.2176 (332) 1.0657
V13 3.8614 26208  3.1826 (332) 2.4014
(211)  4.1551 2.8888 6.0871 (332) 3.6835
(221) 1.5140 1.0185  0.5920 (332) 41471
(221) 23788 14377  3.8841 (410)  3.9706
(221) 38085  2.6087  3.3460 410)  4.1377
221) 41423 2.8940  5.6562 411) 3.9218
(310)  3.8869  2.5932  4.6661 417) 39292
(310) 41366  2.8429  4.8401 @i1)  4.0545
311)  3.7871 24772 3.1040 @1l)  4.1513
(311) 38169 25754  6.0948 (420)  3.6327
311) 40010 27220  3.7090 (420)  4.1245
B11) 41552 28744  5.8413 421)  3.5668
(320) 32316  2.0461  4.2007 @21)  3.5979
(320) 41042 28363  4.7774 421)  4.0306
(321)  3.0074 18115 23791 421)  4.1602
(321) 3.2375 2.1012 53757

those relevant to dodecahedra and icosahedra are shown
in Figs. 2 and 3.

5. Functional expression of peak profiles

Our last remark concerns the functional form of the
peak profiles scattered by a powder sample of equal
crystallites with planar facets. The basic relation between
the OF and the peak profile I, (s) around reflection h is
(Guinier, 1963; Wilson, 19624)

in(s) = I, (s)/C
=y T exp(igt)Vi(t)dt (¢ =2ms), (33)

C being a suitable normalization constant. The parity
property (4b) yields

in(s) = (2/V) [ Via(t)cos (gt) dt, 34

and from the condition V';(0) = V it follows that
o0
2r [ iy(s)ds=1. (35)

For this reason, ih(s) is referred to as the normalized
peak profile.

Kr M hkl Kr KTt M
27138  3.8238 (430) 29694  1.8293  3.7918
2.8806  5.5769 (430) 40924 28311 4.7632
1.1728  0.5807 431) 27816 1.6317  2.5289
20971  5.8989 431)  3.0247 19151  4.7666
25018 27016 (431) 39938 27466  4.0876
2.8960  6.2577 431)  4.1431 2.8789  5.3036
1.2231 1.1254 (432) 23286  1.2218 1.0831
14416 34773 (432)  3.0247 1.9489 53265
26921  3.8360 (432)  3.8366 26179  3.2906
28771 53564 (432) 41573  2.898  5.8736
0.7107  0.2072 (433) 1.5864  0.6285  0.1509
1.4497  4.1977 (433) 30038 19589  5.6356
25083  2.8361 433) 36146 24399  2.4687
29025  5.9677 (433) 41454 28980  6.3234
2.6665  4.7803 (441) 1.9843 1.2925 1.4190
28382  4.8749 441)  2.3367 14399  3.2290
26025  3.4616 (441) 39544 27277  4.0684
2.6598 58314 (441) 41142 28650  5.2123
27603  3.9561 (442) 15140  1.0185  0.5920
2.8628  5.6774 (442) 23788 14377  3.8841
23780  4.6336 (442) 38085 26087  3.3460
2.8434 47869 (442) 41423 2.8940  5.6562
22903  3.2968 (443) 09619 07175  0.3089
23844 56218 (443)  2.4236 14778 43312
27606  4.0656 443) 36126 24517  2.5930
28819 55014 (443) 41460 29040  6.1077

The most general expression of a peak profile is im-
mediately obtained by substituting (1) into (33). Straight-
forward calculations yield

in(5)/2= S/Vg? - M/Vg*
N
+ 2{[11,1'005 (¢D,))/¢*

+ [Z, ;sin (¢D,))/¢*

+[Z5 ;08 (¢D,)) /q*}/V,  (36)
where
Li=ny; - I +2l,, (D;-D,_,)
+30,; (D, - D;_,)% 37a)
IZ,i = - 2[F2,i—1 - F2,i + 3F3,i—1(Di -D,_,)},
(37b)
Iy, = —6(I; — I3,), (37¢)
with

I,y=0, £=1,23.

Here, S = K, (L)? is the area of the projection of the
particle onto a plane orthogonal to h. In obtaining (36),
conditions (5) resulting from the continuity of V()
have been taken into account. For this reason, no [ ;
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is present in (36). It is stressed that (36) is an exact
result for locally planar interfaces. Therefore, it makes
sense throughout the physical range [0, o] of ¢ and the
singular contributions exactly cancel as ¢ — 0. It is
recalled that equation (10.71) of Wilson (1970) contains
in nuce result (36). Indeed, the planarity of facets ensures
that his Vi (¢) (i.e. the fourth derivative of the OF)
is identically null so that the integral contribution in
(10.71) vanishes. The evaluation of the remaining terms
requires that first-order discontinuities of V'3 (t), Via(t)
and Vi (t) are properly taken into account. Ultimately, in
fact, these are responsible for the contributions present
on the r.h.s. of (36). It is also remarked that altogether
the three peak profiles* reported by Grebille & Bérar
(1985) contain the terms present in (36). The last remark
concerns the fact that it can reasonably be expected that
the oscillatory contributions, present in (36), average to
zero at large ¢. In this way, only the first two terms
on the r.h.s. of (36) need be taken into account when
the tails [see §VI of Ciccariello (1990)] of peak profiles
are analyzed. A simple best fit would determine both the

* These have to be multiplied by 2 if A gives the area of the right
section of the prism.
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surface (x K ) and the rotundity (M) of the crystallite,
while X, can be determined either by the sum rule,
first noted by Porod (1967) in the small-angle scattering
realm and generalized by Ciccariello (1990) to the case
of wide-angle scattering, or by the procedure described
by Wilson (1971).

Finally, the more realistic case of polydisperse sam-
ples of crystallites with equal shapes and different sizes
L can be treated in the usual approximation of consid-
ering only self-interference effects of particles with the
same size. Let p(L) denote the normalized number den-
sity of the particles with sizes ranging in the infinitesimal
interval [L, L 4+ dL]. Then, it appears more likely that
the oscillatory contributions on the r.h.s. of (36) average
to zero, while the ¢=2 and ¢~* coefficients on the r.h.s.
of (36), respectively, become

(Sa/V), f L-'p(L)dL

and

2n/5
(@)

©

27]5

2/5
()

Fig. 2. (a), (b) and (c) respectively show the relief lines of K g, K1 and M for a dodecahedron in terms of the polar (9) and longitudinal
(o) angles of h with respect to a Cartesian frame having its origin at the center of the dodecahedron, the z axis orthogonal to one facet
and the (zz,z > 0) half-plane going through a vertex of the considered facet.
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Fig. 3. (a), (b) agd (¢) respectively show the relief lines of X g, X7 and M for an icosahedron in terms of the polar (f) and longitudinal
(¢) angles of h with respect to a Cartesian frame having its origin at the center of the icosahedron, the z axis going through a vertex and
the (zz,z > 0) half-plane bisecting one side of the (upper) regular pentagon parallel to the zy plane.

where subscript h makes the dependence of the quantity
on h more evident and subscript 1 denotes that the ratio
refers to a crystallite of size L = 1. Since the integrals do
not depend on the considered reflection while (S;/V'),
and My, do, the analysis of different peak profiles allows
one to determine the ratios (Sp/V),/(Si'/V), and
M /My independently of the particle distributions.
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